125
125 = 5 * 5 * 5 (prime factorization).
125 is an amenable, arithmetic, Canada,
composite, congruent, cube, Curzon, deficient, Duffinian, evil, Friedman,
frugal, odd, polite, powerful, and tetradecagonal number.
It has 4 divisors, whose sum is σ = 156. Its totient is φ = 100. The sum of its prime factors is 15 (or 5 counting
only the distinct ones). The product
of its digits is 10, while the sum is 8.
125 can be expressed as the difference of
two squares in two different ways: 125 = 152 - 102 = 632
- 622. It can be written as
a sum of positive squares in 2 different ways: 125 = 22 + 112
= 52 + 102.
125 is a palindromic number when written
in base 4 and base 24: 13314 and 5524.
125 is an esthetic number in base 13,
because in such base it adjacent digits differ by 1.
It is a trimorphic number since its cube,
1,953,125, ends in 125.
It is an alternating number because its
digits alternate between odd and even.
Its product of digits (10) is a multiple
of the sum of its prime divisors (5).
It is a plaindrome in base 3, base 7,
base 9, base 10, base 14 and base 16. It
is a nialpdrome in base 5, base 12, base 13 and base 15. It is a zygodrome in base 3.
With its successor (126) it forms a
Ruth-Aaron pair, since the sum of their prime factors is the same (15).
125 is the short leg of at least 1
primitive Pythagorean triangle (a right triangle): 1252 + 3002
= 3252. 125 is the
hypotenuse of a primitive Pythagorean triple: 1252 = 442
+ 1172.
125 written as a Greek numeral is: ρκεʹ.
1125 written as a Hebrew numeral is: קכה.
125 written as a Roman numeral is: CXXV.
125 written as a Mayan numeral is:
● ▃▃▃▃▃ ▃▃▃▃▃
125 written as a Chinese numeral is: 一百二十五.
125 written as an Arabic numeral is: ١٢٥.
The 125th pair of Amicable
numbers are: 13,921,528 and 13,985,672.
The 125th cycle of Sociable
numbers are: 117,701,642,653,548,795,575,955,
121,634,645,296,738,109,256,045, 125,698,590,452,648,995,588,755, and 121,634,613,011,305,423,713,645.
The string 125 occurs at position 1350 in
the decimal expansion of Pi, counting from the first digit after the decimal
point (the “3.” is not counted. This
string occurs 200,311 times in the first 200 million digits of Pi.
Space Shuttle mission STS-125 was the final
servicing mission to the Hubble Space Telescope.
|
The digital expansion of the inverse of
799,999,840,000,008 produces a digital sequence that shows the multiples of
125, written in 7 digit strings, with spaces separating the terms, and beginning
with 0 * 125.
1/799999840000008 =
0.000
0000000 0000125 0000250 0000375 0000500 0000625 0000750 0000875 0001000 0001125 0001250 0001375 0001500 0001625 0001750 0001875 0002000 0002125 0002250 0002375 0002500 0002625 0002750 0002875 0003000 0003125 0003250 0003375 0003500 0003625 0003750 0003875 0004000 0004125 0004250 0004375 0004500 0004625 0004750 0004875 0005000 0005125 0005250 0005375 0005500 0005625 0005750 0005875 0006000 0006125 0006250 0006375 0006500 0006625 0006750 0006875 0007000 0007125 0007250 0007375 0007500 0007625 0007750 0007875 0008000 0008125 0008250 0008375 0008500 0008625 0008750 0008875 0009000 0009125 0009250 0009375 0009500 0009625 0009750 0009875 0010000 0010125 0010250 0010375 0010500 0010625 0010750 0010875 0011000 0011125 0011250 0011375 0011500 0011625 0011750 0011875 0012000 0012125 0012250 0012375 0012500 0012625 0012750 0012875 0013000 0013125 0013250 0013375 0013500 0013625 0013750 0013875 0014000 0014125 0014250 0014375 0014500 0014625 0014750 0014875 0015000 0015125 0015250 0015375 0015500 0015625 0015750 0015875 0016000 0016125 0016250 0016375 0016500 0016625 0016750 0016875 0017000 0017125 0017250 0017375 0017500 0017625 0017750 0017875 0018000 0018125 0018250 0018375 0018500 0018625 0018750 0018875 0019000 0019125 0019250 0019375 0019500 0019625 0019750 0019875 0020000 0020125 0020250 0020375 0020500 0020625 0020750 0020875 0021000 0021125 0021250 0021375 0021500 0021625 0021750 0021875 0022000 0022125 0022250 0022375 0022500 0022625 0022750 0022875 0023000 0023125 0023250 0023375 0023500 0023625 0023750 0023875 0024000 0024125 0024250 0024375 0024500 0024625 0024750 0024875 0025000 0025125 0025250 0025375 0025500 0025625 0025750 0025875 0026000 0026125 0026250 0026375 0026500 0026625 0026750 0026875 0027000 0027125 0027250 0027375 0027500 0027625 0027750 0027875 0028000 0028125 0028250 0028375 0028500 0028625 0028750 0028875 0029000 0029125 0029250 0029375 0029500 0029625 0029750 0029875 0030000 0030125 0030250 0030375 0030500 0030625 0030750 0030875 0031000 0031125 0031250 0031375 0031500 0031625 0031750 0031875 0032000 0032125 0032250 0032375 0032500 0032625 0032750 0032875 0033000 0033125 0033250 0033375 0033500 0033625 0033750 0033875 0034000 0034125 0034250 0034375 0034500 0034625 0034750 0034875 0035000 0035125 0035250 0035375 0035500 0035625 0035750 0035875 0036000 0036125 0036250 0036375 0036500 0036625 0036750 0036875 0037000 0037125 0037250 0037375 0037500 0037625 0037750 0037875 0038000 0038125 0038250 0038375 0038500 0038625 0038750 0038875 0039000 0039125 0039250 0039375 0039500 0039625 0039750 0039875 0040000 0040125 0040250 0040375 0040500 0040625 0040750 0040875 0041000 0041125 0041250 0041375 0041500 0041625 0041750 0041875 0042000 0042125 0042250 0042375 0042500 0042625 0042750 0042875 0043000 0043125 0043250 0043375 0043500 0043625 0043750 0043875 0044000 0044125 0044250 0044375 0044500 0044625 0044750 0044875 0045000 0045125 0045250 0045375 0045500 0045625 0045750 0045875 0046000 0046125 0046250 0046375 0046500 0046625 0046750 0046875 0047000 0047125 0047250 0047375 0047500 0047625 0047750 0047875 0048000 0048125 0048250 0048375 0048500 0048625 0048750 0048875 0049000 0049125 0049250 0049375 0049500 0049625 0049750 0049875 0050000 0050125 0050250 0050375 0050500 0050625 0050750 0050875 0051000 0051125 0051250 0051375 0051500 0051625 0051750 0051875 0052000 0052125 0052250 0052375 0052500 0052625 0052750 0052875 0053000 0053125 0053250 0053375 0053500 0053625 0053750 0053875 0054000 0054125 0054250 0054375 0054500 0054625 0054750 0054875 0055000 0055125 0055250 0055375 0055500 0055625 0055750 0055875 0056000 0056125 0056250 0056375 0056500 0056625 0056750 0056875 0057000 0057125 0057250 0057375 0057500 0057625 0057750 0057875 0058000 0058125 0058250 0058375 0058500 0058625 0058750 0058875 0059000 0059125 0059250 0059375 0059500 0059625 0059750 0059875 0060000 0060125 0060250 0060375 0060500 0060625 0060750 0060875 0061000 0061125 0061250 0061375 0061500 0061625 0061750 0061875 0062000 0062125 0062250 0062375 0062500 0062625 0062750 0062875 0063000 0063125 0063250 0063375 0063500 0063625 0063750 0063875 0064000 0064125 0064250 0064375 0064500 0064625 0064750 0064875 0065000 0065125 0065250 0065375 0065500 0065625 0065750 0065875 0066000 0066125 0066250 0066375 0066500 0066625 0066750 0066875 0067000 0067125 0067250 0067375 0067500 0067625 0067750 0067875 0068000 0068125 0068250 0068375 0068500 0068625 0068750 0068875 0069000 0069125 0069250 0069375 0069500 0069625 … |
The digital expansion of the inverse of 999,999,999,999,999,999,999,875
produces a sequence of digits showing the powers of 125, beginning with 1250,
written in 24 digit strings. The first
25 terms are accurate.
1/999999999999999999999875 =
0.
000000000000000000000001 000000000000000000000125 000000000000000000015625 000000000000000001953125 000000000000000244140625 000000000000030517578125 000000000003814697265625 000000000476837158203125 000000059604644775390625 000007450580596923828125 000931322574615478515625 |
The digital expansion of the inverse of
999,999,998,999,999,997,999,999,995 produces a sequence of digits that shows
a Fibonacci like sequence (Tribonacci 1,2,5) such that a(0) = a(1) = 0, a(2)
= 1, and when n>2 then a(n) = 1*a(n-1) + 2*a(n-2) + 5*a(n-3). Each term is written as a 9 digit string,
and each term is separated by spaces.
1/999999998999999997999999995 =
0.
000000000 000000000 000000001 000000001 000000003 000000010 000000021 000000056 000000148 000000365 000000941 000002411 000006118 000015645 000039936 000101816 000259913 000663225 001692131 004318146 011018533 028115480 071743276 183066901 |
David
No comments:
Post a Comment